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ROBUSTNESS AND APPROXIMATION OF ESCAPE TIMES AND LARGE

DEVIATIONS ESTIMATES FOR SYSTEMS WITH SMALL NOISE EFFECTS

Abstract

For the purposes of estimating escape time from a given set, or other
statistical properties of systems with small noise effects, it is generally
assumed in applications that the system noise is white Gaussian. The Gaussian
assumption greatly simplifies the computation, but is not adequate for many
important classes of applications to control and communication theory. For
example, when the noise is small, the mean escape time from a set can be quite
sensitive to the underlying statistics even though in the study of the effects
of the noise over any fixed finite time interval, the Gaussian approximation
might be a good one. This paper is concerned with the sensitivity of these
statistical quantities to the underlying statistical structure, when the noise
effects are small, and also with the question of when the Gaussian assumption
makes sense. Consider a sequence of systems with small noise effects whose
statistics c-verge in some sense to those of a "limit" system. The techniques
developed invo ve approximation and limit theorems for a sequence of variational
problems associ ted with the minimization of the action functionals which arise
when the theory f large deviations is applied to the above mentioned systems.
The admissible paths and velocity fields are characterized. Techniques are
developed for approximating c-optimal or optimal paths and values of the
action functionals with "restricted velocity fields", and these are used to
get the desired limit, approximation and robustness theorems. Degenerate and
non-degenerate cases with bothbounded and Gaussian noise are considered. Several
examples and an application to a phase locked loop system which arises in
communication theory are discussed. These indicate when the Gaussian assumption
might be acceptable in practice. The results are of potential use in computa-
tion, for they indicate when the results for a simpler "more computable" noise
process might be a good approximation to the results for the true noise process.
The results concerning convergence and approximation seem to be of independent
interest for treating convergence of the solutions of a sequence of more general
variational problems.
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1. Introduction

For the purpose of estimating escape time from a given set, or other

statistical properties of systems with small noise effects, it is generally

assumed in applications that the system noise is white Gaussian. The Gaussian

assumption greatly simplifies the computation, but is not adequate for many

important classes of applications to control and communication theory. For

example, when the noise is small, the mean escape time from a set can be quite

sensitive to the underlying statistics even though in the study of the effects

of the noise over any fixed finite time interval, the Gaussian approximation

might be a good one. This paper is concerned with the sensitivity of these

statistical quantities to the underlying statistical structure, when the noise

effects are small, and also with the question of when the Gaussian assumption

makes sense. Consider a sequence of systems with small noise effects whose

statistics converge in some sense to those of a "limit" system. The techniques

developed involve approximation and limit theorems for a sequence of variational

problems associated with the minimization of the action functionals which arise

when the theory of large deviations is applied to the above mentioned systems.

The admissible paths and velocity fields are characterized. Techniques are

developed for approximating E-optimal or optimal paths and values of the

action functionals with "restricted velocity fields", and these are used to

get the desired limit, approximation and robustness theorems. Degenerate and

non-degenerate cases with both bounded and Gaussian noise are considered.

Several examples and an application to a phase locked loop system which arises

in communication theory are discussed. These indicate when the Gaussian assumption

might be acceptable in practice. The resultL are of potential uste in computa-

tion, for they indicate when the results for a simpler "more computable" noise

process might be a good approximation to the results for the true noise process.
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The results concerning convergence and approximation seem to be of independent

interest for treating convergence of the solutions of a sequence of more general

variational problems.

We will be concerned with robustness, approximation and applications of

large deviations methods [1] - [7] for processes of the type (1.1) - (1.4).

The {&(.)}, {n I are bounded and stationary, w(') is a standard Wiener process,

{Pn  is i.i.d. Gaussian, and {p n  and w(-) are independent of {&n} and E(.),

and EPn = o, covar pn = I. The functions c(.), b(.) and b(., ) are Lipschitz

continuous (uniformly in F). In all cases, x E Rk, Euclidean k-space.

(1.1) y= b(xY,&(t/y))

(1.2) dxY = b(xy,E(t/y))dt + VYr(xY)dw

(1.3) Xk l = xk + ybfxYk)

YI Y Y ,Y'
(1.4) X+l = x + Yb(xk) + yx) .

Several modifications of (1.1) - (1.4) will also be considered. For (1.3) -

(1.4), define xy(.) to be the piecewise linear interpolation of the function with
I (N-)Tvalues xy  at t = ny. Define 9(.) by Tb(x) = lim 1E b(X,

n N N
T/y 

0

Th(x) = lim Ey b(x,t(t))dt, and suppose that b(.) is independent of T.
y '0

The various assumptions introduced below are not always used together.

Let G be a bounded open set with a piecewise differentiable boundary, define

N£ (G) =G 1  an e1- neighborhood of G (henceforth fixed),and assume

(Al.1) x = b(x) has a unique stable point xo in G1  and all trajectories

originating in G tend to x Also, these trajectories are never tangent
1 0*

to 3G.

Define the H -functionals
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Hx,a) = lolim E e N-T (N-M) log E exp '(b(x, n + o(X)Pn)
TN,t't M

(1 .5)

H(x,a) = - lim y log E exp f a'[b(x,C(s))ds + a(x)dw(s)].

Where T1 -T = T, Ny = Tip My = T , and we assume that the limit does not

depend on T. or T.. When we wish to emphasize the Gaussian component, an affix a

will be used and we write H (x,a) = HO(x,a) + H (x,c).

(Al.2) In (1.5), let the convergence be uniform for xEG 1 and also in

the initial data, if E is replaced by the expectation given the E(.), or

{ nI data up to time T or T /y (discrete parameter case).
n0-0

The limits in (1.5) and assumption (Al.2) are phrased as they are

because we wish to treat the escape time problem when the noise is not

necessarily Markov. If the noise is Markov, it is sufficient to set

T0=M=O and let the convergence alluded to in (AI.2) be uniform in x and

in 0' the initial state for the noise process. We will also sometimes use

the weaker form

A(1.2') Let T0=M=0 and let the convergence in (1.5) be uniform in

xE GI

Define the Cramer transformation L(x,8) = sup[8'a-H(x,a)], and set

T
U(x) = {S:L(x,O) < }. Define S(T,€) = L(O(s),O(s))ds, if * () is

absolutely continuous, and set it equal to c otherwise. For T(¢) =

inf{t:¢(t)1 G), define S(¢) = S(T(€),€), S (x) = inf{S(¢):¢(O) = x),

(Xo) and set TG= min{t: xy(t) j G}. The functional S(T,) is

called an action functional if for each a > 0, h > 0 and bounded continuous

*(.), there is a y0 > 0 such that for y < YOf
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(l.6a) Pfd(xy, ) < 61 > exp - (S(T, ) + h)/y

(l.6b) P{d(xY ,iD ) > 6} < exp - (a-h)/y,

where d(.,.) = sup norm distance, and Da = {bounded continuous *(-):

S(T,) < a}. See [5], Theorem 2.1, where S(T,O) is written S 0,T(). Also

[5], (1.6) implies that for any set A of continuous functions on [0,T],

(1.7) inf S(T, ) < lim y log P{xy(.)E Al

OEA 0  Y

< limy log P{xY(.) E A) < - inf S(T,),

where A= interior of A, and A = closure of A.

Under broad conditions

(1.8) liM y log ETY = S
Y-0G 0

See [3,5]. In [5], a = 0 and (Al.2) was implicitly assumed. With a 0,

the proof in [5] (Theorem 5.1) is valid for more general E(.), provided

(AI.2), (AI.3) hold, and using the convergence of (1.5) uniformly in x E GI

and in the initial data. It can also be extended to cover a = constant (see

appendix). The case where a A 0, but t(-) does not appear, is in [3].

The proof in [5] was given for the continuous parameter problem, but it also

works for the discrete parameter problem. Criteria for (Al.3) appear in theorems
3.8 and 3.9.

(Al.3) For x E G1, H(.,.) is continuous and H(x,.) is differentiable.

(A.4) The boundary DG is piecewise differentiable. In particular, for

each x E aG, there is a neighborhood N(x) and a finite number of dif-

ferentiable functions 01 (.), i < k, such that G n N(x) = {y: ei(y) < 0,

i = 1, ...,k), aG n N(x) = fy: i(y) < 0, i = 1,...,k, and some ei(y) = 0).

In Theorems 3.11 and 4.7, the 'continuity' condition Al.S will be used.

For open Q containing xo0 define S(Q) = inf {S(T,4): 0(0) = x0 , O(T) E 3Q}.

Then S(Q) is lower semi-continuous in Q, in that if % + Q, then

lim S(Q%) > S(Q). But it is continuous at 'most' Q in the following sense.



Let Q0 = N (Q) and p < p with S(Q ) < . Then for all but a countable
p p p1

number of p0 < P 1  S(Q) P S(Q P) as p 0 '.

(Al.5) S(G ) is continuous at p = 0.

The quantity (1.8) is of considerable importance in numerous applications

in control and communication theory, and in various applications to stochastic

approximation, particularly in estimating escape times from regions in which

an algorithm or process has a 'stability' property. Normally such estimates

are hard to get unless c is small. Except for the purely Gaussian case, it

is now almost impossible to calculate H(.,-), L(.-,.) or Sop and so the

purely Gaussian model is used almost exclusively. However, the value of So

can be quite sensitive to the underlying statistical assumptions, and it is

not normally satisfactory to use a 'local diffusion or Gaussian' approxima-

tion [S. We study the problem of robustness and approximatability for such

problems.

Section 2 contains a brief formal remark on approximatability by a

Gaussian system. Section 3 contains various background results concerning

smoothness of H(-,-) and the admissible 'velocity fields' for the variational

problem associated with getting SO or the estimate in (1.7). The main

approximation results appear in Section 4. Some examples are discussed

in Section S. Section 6 discusses an application to a phase locked loop,

and various problems which arise in connection with that application.

This class of applications seems to be both natural and of increasing

popularity for the applications of large deviations or singular perturbation

type (partial differential equation based) methods. Since the nhysi.:al noise

in such systems is not white Gaussian, or even Gaussian at all (strictly speaking),

that application provides a good example of the role of our results.

In the appendix, there are some remarks concerning extending the proof in

[2,5] that S(T,O) is an action functional, to the composite cases (1.2) and (1.4),

where both Gaussian and non-Gaussian noise appear.
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2. A Comment on a Gaussian Approximation

1

The expression acb(x) + - a'o(x)a' (x)a Ha(x,a) is the H-functional
2

for the system

Y (1 XY + yI(xy ) + YO(xY)Q n(2.1) n nn

N-1
The gradient and Hessian (with respect to a at c=O) of H,,K log E exp al' b(x,En)NNi 0
are

N-i
(2.2a) HNa(x,0) = E I b(x,&n )/N = bN(x) - b(x)

0

N-1 N-1(.2.2b) HN a(x,0) E I. (b(x,&n)-b Wx) I (b(x,En)-b-NW))'
i=0 i=0 n N

I(x).

Both HN(x,.) and H(x,-) are convex.

Let *(.) be absolutely continuous. Then, under broad conditions, the

piecewise constant (constant on [ny, ny + y)) function which has values
N

/y- (b((y), {i)-b( (iy))) at t = Ny, converges weakly to a Wiener
i=0

t

process with zero mean and covariance f (O(s))ds. This suggests that a

suitably interpolated (1.3) can be approximated by a 'small noise' diffusion

of the form dy = b dt + y /F dw. But such an approximation is purely

formal, and is not usually valid in the sense of approximation of the large

deviations results. Suppose that *(,) is an optimizing (or nearly so) path

for the S(.) of (1.3). If
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sup[a'¢(t) - H(O(t),a)]

aceQ

for almost all t, where Q is a set where the quadratic approximation

a'b(x) + a' I (x)a/2 to the H-functional for(1.3) determined by (2.2a,b) is

acceptable, then the Gaussian approximation makes sense, but this is normally

very difficult to verify.

3. Preliminary Results

Theorems 3.1 to 3.4 give necessary and/or sufficient conditions for

8 to be in U(x) in terms of the underlying statistics. This is important,

since when minimizing S(O) or S(T,O), we have $(t) E U(P(t)), and the

questions of finiteness and approximatability of S0  and inf S(T,P) are
PEA

related to the properties of U(x). Theorem 3.5 and Corollary 3.6 provide continuity

and convergence results which will be ucef"i! in the sequel, and Theorems 3.8

and 3.9 provide criteria for (Al.3).

Theorem 3.1. H(x,-), L(x,,) and U(x) are convex. L(.,-) and U(.)

(in the Hausdorff topology) are lower semicontinuous.

If a(x)a'(x) is uniformly positive definite on G1, then L(x,B) <

all x E G and all 8. Remarks on. the degenerate case are given below.
1]

Theorem 3.2 (En } i.i.d, a = 0.) Let n = n have compact support. Then

H(x,a) = log E exp a'b(x,&) and

(a) L(Xi) = if 8 1 co range b(x,&) = C

(b) L(x,a) < - if 8 c rel.int. co range b(x,C).

Note. B c range b(x,&) if for each e > 0, P{b(x,&) c N (6)} > 0. The



relative interior is relative to the smallest linear manifold which contains

the set.

Proof.

(a) Let 8 C. Then there are ,c0  such that Z'b < co, b C,

91a0 > c. Also,

sup[a'0 - H(x,a)] > sup[ck'B 0 - log E exp ck'b(x, )]
a c>0

> sup[c,80 - cc 01
c

(b) Let 80 be such that P{b(x,E) E N(60)) > 0 for all neighborhoods

N(80) (in the smallest linear manifold containing C) of 0 For convenience,

define M(80) = {E:b(x,E) E N(80)}, and PM(B0) = PjM( 0)1.

Then (Jensen's inequality is used to get the last line)

sup[a'8-H(x,a)] < sup[a'a-1og PM(a0) exp ab(x,C) p( 0 .

dP
<sup [a8-C'[ b(x,E) ( log PM(a).

-L ima 0 M( 0

Thus, for a=j b(x,E) dP/PM( 0), L(x,6) < -. The assertion (b)
M(ao )

follows from this, Theorem 3.1 and the fact that a convex set is a contin-

uous function (Hausdorff topology) of its extreme points. Q.E.D.

The general case (1.3) or (1.1) for non i.i.d. ( n} is more complicated.

We concentrate on (1.3), and first treat the finite Markov chain case.
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Theorem 3.3. Let { n} be a finite state Markov chain with state space
n

D, and transition probabilities {p. }' and with all states communicating

with each other. Then U(x) is the set of B0 such that there are N nn

and z. such that p > 0 all i and

N -1
n

(3.1) BO = m N b(xzi).
n n i=O

Proof. By the ergodicity, such 0 form a closed convex set. Let {z.},
0 1

satisfy the hypothesis and define B0 by (3.1). There is a q > 0 such that

Pz. z > q, all i. Then (the limit below exists by the discrete parameter

version of Theorem 2.2 of [5]; see also Theorem 3.8 below).

N-1

sup[ct'80 -li log E exp a' I b(xEd ]
a N 0

N -1n

sup[a' - lim - log E exp a' I b(x,Ci)
a n n 0

N -i N -1
n n

< supfa'$ lim log(exp a' b(x,z) n p< u~' 0  Ni z- zi
n n 0 i=l I i

< -log q.

Thus 8 E U(x). The reverse case can be proved by a method similar to that

of Theorem 3.2 (a). (See also Theorem 3.4.) Q.E.D.
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Note that we also proved that L(x, ) < - log q on U(x). We now move

to the general case (1.3). Put B0  (x) if for each c > 0, there are

q > 0, N n w and {zi} such that (3.1) holds and P{b(x,i) NC (b(x,zi)),

i < n }> qn

Theorem 3.4. Let the Ek each have support in a compact set Co. Then

relative interior co U 0 (x) c U(x). Define

k-i
Rk = co range [ X b(x, i)/kI.

0

Suppose that there is a 6 > 0 such that the distance between B and Rk

is > 6 for an infinite number of k. Then 0  U(x).

Proof. The proof of the first assertion is similar to that of Theorem 3.3.

To prove the second part take a subsequence of Rk (also indexed by k)and suppose that

d(0 o,Rk)> 6>0 for all k(w.l.o.g.). Note that there are 0>0 and bounded {ckI
t 9

and unit vectors Zk such that zkb < ck for b : Rk and ZkB0 > Ck + C0*

Assume that Zk -k and ck -* c (or else work with a convergent subsequence).

Then
k-1

supfa'B 0 - H(x,a)] >_ sup[cV'0 - lim i E exp k cel I b(x,&i)/k]

a 0 c>O k 0

> sup[c'%B - cc0 ] co. Q.E.D.

c >0

There is an obvious continuous parameter analog with an integral

replacing the sum and (for measurable z(.)) Pfb(x, (s)) , N (b(x,z(s))),

s > t } > exp - tqC2 qc > 0, replacing the analogous condition above.
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The continuity of L(.,.).

Theorem 3.5 Let H(.,.) be continuous and let x0o, 0 ,N (60) satisfy

L(x0,8) < - for 8 c E (a0). Then L(.,.) is continuous at (x0,0).

Proof. By Theorem 3.1, H(x,-) is convex. By the hypothesis and the

concavity (in a) of a'B - H(x,a), the set of maximizing a (at x0, O)

is bounded. Otherwise, for an appropriate but arbitrarily small 66 we

would get L(x0,a0 + 6a) = . Also a'8 - H(x,a) - a'0 - Ft(x0 ,a0)

uniformly on bounded a-sets as (x,S) - (x0 80 ). The concavity and the

last three sentences imply that the set of maximizing a in sup[a'6 - H(x,a)]

must also converge to the set of maximizing a for x0, 0  Thus L(x,B) -
0*

L(x0,80 ). Q.E.D.

A remark on the degenerate case.

Suppose that (1.4) has the form (x = (xl,X 2), a = (al,a2), a = 1'82
=2 yb~ k- 2

Y Y + y -Y )  x Rk -k 92 1R

xll X~ + l (x) x E R x, ER,Xl,k+l 1 l, k 1 k 1 2

(3.2)

xY XY b( xYP
2,k+l Yb2(Xk) + Yo2(Xk)Pk

Then
N-1

(3.3) H(xa) a 1 + a2 22x2/2 + lir log E exp a2 b2(x,N 20

and L(x,8) = if a b (x). But Theorem 3.5 can be used to study continuity

with respect to 82 when $I = bl(X). If o2(x) 2 (x) is uniformly positive

definite and a(-,.) is continuous, then L(x,8) is continuous in (x.82)

when 81 = b1 (x). Similar remarks hold in the continuous parameter case. Define

U = {82: L(x;b(X),82 ) < w} . In the sequel, when we rcer to the de-

generate case, the form (3.2) is always intended. In the non-degenerate case, we

assume that U(x) has a non-empty interior, and in the degenerate case that U2(x)

has a non-empty interior.
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-6 -
In the non-degenerate case, define U (x) by $ SU (x) if

E E U(x) and d(a,aU(x)) > 6, where d = Euclidean distance. The set
-6-6

U (x) is called a '6-interior' set. Let U 2 (x) denote the 
6-interior

6 --6set for U2(x), and in the degenerate case, define U (x) by 8 E U-(x)

- -6if 0 = (0I,02), 01 = bI(x) and 02 E U2 (x). The continuity of a set valued

function is always in the Hausdoff topology.

An argument similar to that of Theorem 3.5 proves the following.

Corollary 3.6. Let U(.) and H(.,-) be continuous and let Hn (xa) H(xa)

uniformly on bounded (x,a) sets, where Hn and H are H-functionals.

Then, in the non-degenerate case and for anycompact set K and 6 > 0,

Ln(x,S) - L(x,a) uniformly on {x, B: x t K, B c U(x)} E . In the de-

generate case, let In(-) denote the 'mean'dynamics for the system yielding

H. Then Ln (;bn (), o) 
-L(';bl(-),- ) uniformly on {x, 2:xEK,02 EU(x)}

If U(-) is not continuous, the convergence holds but might not be uniform.

The proof of the following 'path approximation' theorem is omitted.

d(-,.) is the sup norm distance.

Theorem 3.7. Let U(-) be Lipschitz continuous for x E G1, and suppose that there

is a 61 > 0 such that U (x) is non-empty for all x E G1. Given e > 0

and *(.) such that t(t) C,1 and (t, i(@(t)), t < T', there are
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£0 > O, 6 > 0 and absolutely continuous (.) such that d(0,0A) 6

d(;,; ) O< 0p ;'(t) E U (0' (t)), t < T, and £0 - 0 as £ - 0.

Smoothness of H(.,-).

In Theorems 3.8 and 3.9, we stick to the discrete parameter Markov

chain case (compact state space D) and use a clever method of Freidlin [51

to slightly extend his results. Analogs of these theorems for the non-

Markov case would be quite useful. C(D) denotes the space of continuous

functions on D endowed with the sup norm topology. Define the operator

Q(x,a) : C(D) - C(D) by (use = 0)

(3.4) Q(x,a)f(&) = E f( 1) expalb(x,&l),

where f(.) E C(). For m > 1, let 11 Qm(x,a )I = Am(X,a) denote the

operator norm. Henceforth x E G1. and B is a compact (x,a)-set. Theorems 3.8

and 3.9 give conditions under which (AI.3) holds.
Theorem 3.8. Let there be an m such that Q m(x,a) is compact for each

(x,)EB.Suppose that Qm(x,a)f(E) > 0 for all & E D if 0 j f(.) E C(D)

and f() > 0. Then Xm (x,a) is an isolated eigenvalue (with a one dimen-

sional eigenspace) and the corresponding eigenvector em(x,a,,) satisfies

(3.5) inf inf e (x,ot,&) 6 > 0.
B & m 0

Also

(3.6) H(x,a) = log A(xa).

The convergence defining H(x,a) is uniform on B and in the initial data

and H(.,.) is continuous.

m m
Remark. Q (x,c)f( ) = E f(%m)exp a' X b(X,4k).

1
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Proof.

The continuity of X (x,a) is obvious. The rest of the proof is a

slight modification of [5, Theorem 2.2]. Write (x,a) = y. By Karlin [7],

the compactness and strict positivity imply that Am(y) is an isolated eigen-

value (and has a one dimensional eigenspace), and from this it is not hard

to show that the corresponding eigenvector e (y,.) is strictly positive.

We suppose w.l.o.g., that sup em(y,&) = 1. Next we prove continuity

"of e (.,.). Let y -+ y. The set { Q (y)e (Yn,.), n > 1} lies in a compactm n

set. Take a convergent subsequence, indexed by n, with limit f(.). Also

[Q m(yn)-Q m(y)]em(Yn,.) and hence [ m(yn )e m(yn,.)-f(.)] converge uniformly

(in &)to zero. Since X m(yn)-*X (y), em(yn,.) converges uniformly (in &)

to f(.)/xm (y), which must be equal to e (y,.) by uniqueness of the eigen-m in

vector. Thus since e (.,.) is continuous in & for each y, it is continuous

in (y,). This and the strict positivity of Q (y) and of Qk(y)em(y,.)), k< m,

for each y EB implies (3.5).

Now let y E compact B. By the above results, there is a 60 > 0 such

that for each 9 E D

k Qmn+ky< nm+k

(3.7) (y)Q(y ,)= (y)e (y,&) < Q (yl( )
mm m

< IQmn+k (y)e (yE) 1 Xn (y)Qk (y)em(Y
-0 (e(Y) = 0 m')

Since

(3.8) H(y) = lim I log Q (y)l(),

(3.S) and (3.7) imply (3.6) and that the limit is uniform in y c B, & E D.

Q.E.D.
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Theorem 3.9. Let X (x,a) =11 Qm(xa)j be an isolated eigenvalue of Qm(x,a)s m

with a one dimensional eigenspace for each x,a. Then Xm(x,.) is differ-

entiable for each x. (We do not use the compactness or positivity here.)

Proof. As noted in [5], this type of result essentially follows from Kato

[8]. For each a in some open set A0, let T(a) be an operator in C(D), and

when a = aO, let ;(a0 ) be an isolated eigenvalue with a one-dimensional

eigenspace. Suppose that 11 T(a) - T(a0) - 0 as a a 0 . We can then choose eigenvalues

;(a) of T(a) such that,(a) -(a u ) as a a0 [8, p. 213]. Let A > 0 be

such that the distance between N2A (V(c 0 )) and the {spectrum of T(a0) minus

is at least A. Define r = N2 A( (a0)) - NA da0)). Then(Kato, [8],

p. 208, Theorem 3.1, remark 3.2 and proof) there is a C > 0 such that if

fl T(a) - T(a 0 ) IJ < C min 11 R(;) I -1, where R( ) = (T(a0 - I) - , then T(a)
Er

has no eigenvalues in r , but ;(a) E NA(4(a0)). Since ([9], VII 3.3), d(4) >

JJ R()[ -1, where d(;) : distance ( , spectrum of T(U 0), we find that if

jJT(a) - T(a 0 ) 1 < CA, then[;(a) - (a 0 )1 < A, for small A>0.

Fix x and define the operator Ti(x,a) in C(D) by Ti(xa) f() =

m m
E f(m ) I bx, k) exp a, X b(x, k), where b.(-,.) is the ith component of b(",-),

1m k=1 1 k k

and let a = (a 1 , . . ). Let X ,6aa0) denote the eigenvalue of
m ,~ 0 )

Qm(x,ao) + . 6aiTi(x, a0) which converges to Xm (x,a0) as 6a - 0. By the

first paragraph and a truncated Taylor expansion of QM(x,a 0 +6a) in 6a,

Xm(xa 0 +6a) differs from X(x,da, a0) by o(16sa), where o(16sa) is uniformXm(X 0 + ifr rm 0 , O

in a in any bounded set.Thug it is not enough to prove differentiability of

A m(x,6a,a ). But this differentiability follows from the expansion (eqn.

(2.17), p. 446 [8]) and the continuity in a of T.(x,.) and Q m(x,.) and1

we omit the details.

Q.E.D.
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Theorem 3.10. For each x, let the H-functional H(x,.) be differentiable

at a = 0, and let K be compact. For each 6 > 0, there is an c > 0

such that L(xB) > c for 8 - b(x)I > 6, x E K.

Proof. By using a'(8-b(x)) - H(x,a), where H is the H-functional for

dynamics b(x,C) = b(x,C) -b(x), we can assume that b(x) = 0. Fix 6> 0.
N-1 N-1

N 1 E
Note .- log E exp a' [ b(x, i) >W log exp Na' K Ib(x,i) 0 as N-

0 0

since b(x) = 0. Hence H(x,a) > 0. Suppose there are xn + xo' 8n ) a0'

xn E K such that L(xn,8n) 0 and In I > 6. By lower semicontinuity,

lim L.(xn n ) > L(xo,0 o), and 160 1 > 6. By the convexity and non-negativity

n

of L(x,.), L(xo,8) = 0 for 8 E [0,80]. Thus H(xoa) > a'a for 8 E [O,8 0 ].

This, H(xo,0) = 0 and H(x,a) > 0 contradict the differentiability at

-= 0.

Q.E.D.

Theorem 3.11. Let S0 < -. Then under (Al.1) to (Al.5),

lim y log ETY < S
Y-+G G- 0*

(For (1.2) and (1.4)) set a(.) = constant.) Let (Al.2) hold when T 0 is

replaced by a stopping time T and T1 b _ t + T. Then

lim SET >
Y log G- 0

With the use of the assumptions concerning uniform covergence of the H-

functional, the proof is essentially the same as that of Lemma 1 in [3].
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The uniform covergence is important in order to get estimates (of the

probability of the events used in Lemma 1 of [3j) uniformly in the condi-

tioning data, since we do not necessarily have a Markovian set up. The

proof in [3] implicitly assumes the continuity of S0 x) at x0 . But, under

our conditions this holds by essentially the same proof as used in Theorem 5.1

of [5] (with our (Al.5) and S0 <- replacing (5.1) of [51). Condition (Al.5)

can be replaced by the controllability condition (A4.7) and (bounded U(x)

case), the existence of an £-optimal path satisfying the requirements of

Theorem 4.7. In fact, these conditions imply A1.5. Allowing for degenerate (see

(3.2)) b(.,.) and non-Markov noise is important in applications.
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4. Approximating U(x),S(T,A) and S0 .

Lemma 4.1 and Theorems 4.2,3 show that if H - H, 0 4 , then
n n

lim S n(n) > S( ), a basic result for the general approximation results.
n

Theorems 4.4 to 4.8 show that S - S if H - H and some other conditions
n n

hold. Theorem 4.9 gives approximation results for inequality (1.7), when
H - H. Many of the auxiliary and intermediate approximations and techniques

n

seem to be of independent interest.

One or more of the following conditions will be used throughout the

section, and will occasionally be weakened. Until Theorem 4.9, x is always

assumed to be in G1.

(A4.1) The H-functionals Hn (*,) converge to H uniformly on bounded

(x,a) sets.

(A4.2) U(-) is continuous in the Hausdorff topology.

(A4.3) U(x) and { n) or (*) are uniformly bounded. (We will also treat

the unbounded case.)

For simplicity we consider 2 cases, the non-degenerate and the degenerate

of (3.2).

(A.4.4) There is an C0 > 0 such that for all x either (non-degenerate case)

N 0 (b(x)) E U(x) or (degenerate case) N. (b2 (x)) E U2(x).
I 0 0 2 2
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Lemma 4.1. Under (A4.1), lim Ln (x ,6n) > L(x,B), if xn X, Xn .

n

Proof. Let RN = {a:Ial < N1 and define L N(x,B) = sup (c'8-H(x,a)). Then

N Na

L N(x,a) t L(x,$) as N--. Also Ln (x n, 6n ) > sup ('n -Hn (x na)) - L N(x,6)

aERN

As n--. The assertion follows from this, and the arbitrarinesof N. Q.E.D.

Let Sn (T,4) S N ( ) denote the action functionals corresponding to the
~nH-functional H n  The next theorem is basic for the subsequent approximation results.

Theorem 4.2. Let p (.) €(.) uniformly and lira ) =T<-. Then,
n n

under (A4.1) - (A4.4) and (A1.3),

lim Sn(n) > S().
n

Remark. The case where T( n) n Tn -- does not have much significance:

If T(O) < -, then use the fact that Sn(to) is non-decreasing in t and

the theorem follows by working on [O,T( )] in the proof. If T( ) = and

lim Sn < -, then 0(t) -* 0, c(.) never escapes from G and S() is not defined. In any
n

case, if each T( n) < and sup Sn (P ) < -, for each c > 0 we can show that
n

there is a sequence Oc(.) such that S (047) < S 0 7 + F_ and sup T(P )< no.
nI nfl n n n fn

Proof. Assume w.l.o.g. (choose a subsequence if necessary), that

T_1Sn(S < -, and that T(On)-T > T(O), T < -, and let m(.) denote

n nn
n

Lebesque measure. For any > 0, m{t: n(t) I N (U(On(t))), t < T 1}.0

as n since L n (X,) uniformly in ( ,x. in any compact subset of

{Mx:e f Ne(O(x))}
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To see this, suppose that there are {x n, I and K < such that L (x , )< K,where
n n n nt n-j

(U(x d) and xn x, n . But a I N (U(x)) and

lim Ln (x ,8n ) > L(x,a) = by Lemma 4.1, a contradiction. By
n

this, the convexity of U(x), continuity of U(-), and weak convergence

of $ (.) to ;(..), we have m{t:;(t) I U(O(t)), t < T} = 0; in fact
n

it can be shown that U(O(t)) can be replaced by U(O(t)) there.

Now recall the definition of the 6-interior set U (x)

and define U N~ (U(x)) and let n () be the indicator of the set on

which ; (S) E U (0 (s)). We have
n C n

(4.1) B1  lim f n Ln( (SL,_(S))ds > lir ,TnL( n(S))I(s)ds BI.
n 0 n 0

Let 6> c. For large n and small 6 and 6, there is a measurable function

-6
A (-) with I (t)I < 26 and such that n(t) A n(t) E - (0 n(t))n n -- n

for all t such that *n(t) E U C(0 (t)) and such that for these t and

small 6 and c,

(*) L n(0 n(t),n (t) + An(t)) < Ln (0 n(t),;n(t)) + ,

where 6. - 0 as 6 - 0.

To prove the last assertion, define h6(x,S) as follows, for

0 e U (C) - Ux). (We do the non-degenerate case, the proof in the

degenerate case is almost the same.) Let h6 (x,8) he the unique intersection
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on a'U x) of the line segment {z:z sS + (1-s)b(x), 0 < s < 1}

connecting 8 and b(x). If 8 ' U (x), set h, (x,a) = 8. Then

[h6(n(),;n (')) - ; (.)] In(.) - n () is measurable. Now we

prove (*). Suppose that (*) is false. In particular, suppose that for

each small 60 > 0 there are x, , x -+ x,8n  6 ,5 n 0, e - 0, with n E UE (xn )nnn n

and such that L (xn , h n - L (x >n - Then the convexity
n hn (x8)) n n~ n 0*n

of Ln (x,.) and the fact that h6 (XnB) - n 0 as n implies
nnn

that the derivative (in the direction of increasing s) at some s = s n 0n

along the line segment {se n + (1-s)b(x n)} increases to - as n - . By

convexity, the derivative is non-decreasing as s increases. This and the

uniform convergence L (.,-) - L(-, .) on {x,B: xc compact K,BE U-(x)} for each
n

K and 6 >0lead to a contradiction to (A4.2), (A4.4). In particular, we get

L(x,b(x)) = , contradicting L(x,b(x)) = 0. Thus (*) holds.

By (4.1) and (*)
T

B > lim L (t ) + n(t))In (s)ds - 6 T.2-- 0n n E:n 0

By Corollary 3.6,

lim lim sup ILn (y,B)-L (X,B)) = 0, y,x E Compact in G1
C n x-yI<_c n n

-6BE g(x)

Thus, by the uniform convergenceO(-) #(.), for each 60> 0 there is an

E > 0 such that It-Ti < E £( implies that for large n

-_6
IL n(0n (),) -Ln(0n(t),B)l < 60, SEU ( n(t)).



Define a finite sequence{t1, i = 1 .... q} such that

S i> t i - <cop to 0 q = T+c0 , and set L ( (t), W(t))= 0ti~l > i i+l - ti- n to nt

for t > T . Then (the last inequality below uses Jensen's inequality and the-- n

convexity of L n(x,

(4.2) B2 >_ -6 1T - 60 T
,ti I.

+ lim L ( (ti)' (S) + n (s))In(s)ds
n ti n n 1 n n E

1

> -(6 +60 )T + lim I(ti-ti)Ln( n(ti),fn,

n i

where

fn, _ i + l ( n (s) + n (s))I n (s)ds.
i6t-)n ntti+l- i i

Assume (or take a suitable subsequence) that A (-) converge to an

function A(-). Define

(t i+l (t i ) A(ti+1 ) - A(t i )
f" = [ -~ t. t i+ I - t.

z i+l 1 i.- t.t -

Then fi, - f. as n - , for each e>O. By Lemma 4.1, (4.2) and the lower
1 1

semicontinuity of L(,.) and its continuity on {x, 
B :EU (x)}"

(4.3) B1 > - T(6 1 +6O) + .(ti-ti)L( (ti),f

1-- T61 + IiL(@(s), $(s) + (s~)s-

£ -0 J0€00

Finally, letting e-' 0, 6 - 0 and again using the lower semicontinuity of

L(.,.), yields the theorem. Q.E.D.
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We next treat an unbounded U(x) case.

(A4.S) Let (a) inf L(x,8) a Bs
xEG 1 

s

(b) (nondegenerate) sup sup L(x,a) < =, all B<o.
181B xEG1

(degenerate), let 81 bl (x), and take sup only over

821 B.

The conditions hold for (1.2), (1.4) if (non-degenerate case) a(x)o'(x) is

uniformly positive definite, and (degenerate case) if a2 (xXa(x) is uniformly

positive definite.

Theorem 4.3. Under (Al.3), (A4.1), (A4.5), the conclusions of Theorem 4.2 hold.

Proof. Let nP n -* .) uniformly and w.l.o.g. let lir Sn (4) < - and
n

T(On) = Tn - T > T(O), T < -. For notational simplicity, we do the nondegenerate

case only. The proof for the degenerate case requires only minor modifications.

Since U(x) = entire space, Corollary 3.6 implies that

Ln (x, 8)

(4.4) lim lim inf n OD
.

161-3-W n xEG1

Also, (4.4) and lim S (n ) < - imply that
n

(4.5) lim lim m{t:t < Tn, 14n (t)l > K1 = 0.
K- n
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Define IK(-) = indicator of set where 1 n(t)l < K. Then (4.1) holds

with I n replacing I 
n . By the uniform convergence of L (",-) to L(-,.)

on bounded sets and the continuity of L(-,.), for each 60 > 0, there are

C > 0, {t.}, t o = 0, 0 < ti+ - t < Co, as in Theorem 4.2, and such that

rn > •~

0 i 0 i 1 t
lim Ln (n(S),, en (S)) (s)ds > -6 0 T  i

n

lime L ;¢~t) ,(,~))In (s)ds.
n i(nt t.

The proof is completed in essentially the same way that the proof of Theorem

4.2 was completed, except that K replaces c - 0, there is no need

to introduce An() and

rTn
(4.6) ir lira 0 n(S){(l-I(s))ds = 0

K n 0 nK

is used to get (I(s)ds-_ 1t(t ) - 4(t.), as n + m, then K - w.

n ~ () K i+l

Q.E.D.

Limits of {S }. The functional H corresponds to a system of one ofn 11

the types (.1) to(l.4) with dynamical terms b, b, a subscripted by n and

replacing k' where the 'mean' dynamical term is bn (, ) . As n b , n (x) -b(x) and

many types of assumptions on the behaviorof x = b (x) can be dealt with.
n

Here we simply assume (A4.6).

(A4.6) The system corresponding to H-functional IIn satisfies (Al.l), but

where replaces xo  ndx -) nx

xt n......



-25-

For the degenerate case, we need the 'controllability' condition

(A4.7). In the non-degenerate case, with the unbounded U(x), (A4.7) always

holds if the conditions 102I < M and = bl( €) are replaced by

1;1 < M. In the non-degenerate case with bounded U(x), (A4.7) always

holds if the condition 2 (t) E U 2( (t)) is replaced by O(t) U-(¢(t)).

(A4.7) (Unbounded U(x) case.) There is an M < - such that for each

small C2 > 0 and each y E N E2(x 0), there is a function

) : .,2- such that 0(0) X0 ,(t)= v for some t< T,

where T -) 0 as e2 0, and = bl(0), ] 2' < M.

(Bounded U(x) case.) Simply replace M and 1;21 < M by

E(t) E for some > 0.

Theorem 4.4. (Unbounded U(x) case) Assume (A4.1), (A4.5), (A4.6) and

(A4.7) (for the degenerate case) and (AI.l), (AI.3), (Al.4). Then

Sn ). SO .

Note (A1.2) is not used here. The theorem makes no direct claim

concerning escape times and the H-functionals are defined by (1.5).

Proof. Fix e > 0, let SO < - and let oc(.) be an c-optimal path

for S(.) with oc(0) = x0 " Write T,:= T(Oc). Below, we show that for

EE
small c3.0 /(.) can be selected such that it is defined until T'

the exit time from N (G), and S(T ,.0) < S0 + 3E and for some
C3 0

K < w,;c(t)l < K, andoc(.) is not tangent to any of the boundary
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curves at the exit point from G. Assume this for the moment. In this

part of the proof we do only the (more difficult) degenerate problem.

Define C C Pl nE ) by (in the non-degenerate case we would set
n in' 2n

n n n @InX C(t (t=-Xn+ 0bn@()d
t

2n 2n(t) l + (s)ds

where x is defined in (A4.6), and b = (- b 2 Recall that b() is Lipschitz

continuous.Then,by the properties of~P assumed inthelast paragraph, T = T(Pn) <
n n

for large n and Tc -T as n - o. By the boundedness of ;c(.) and the
n

uniform convergence of Ln (x;bln(X) ,S2 ) to L(x;b(x),32) on bounded (x,L2) sets,

(4.7a) S S (x)= S (Tnn) = Ln( (s)' B("1 @(s)),;L(s))dsn( n n n n n a0 nn n'2

L(06(s); b-i ((s)), qP(s))ds < S + 3c

Thus

(4.7b) lim S n <_

n

We now show that there is a *C(.) of the desired form.

Let O (.) be an E-optimal path for S(O) with cb (0) = x0 " We do the non-

degenerate case only, for the sake of notational simplicity. A very similar

construction yields Oc(.) of the desired form for the degenerate case.
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Let IK(.) denote the indicator of the set where IcE(s)I < K. By (A4.5)C

and S0 < O,

T

(4.8) lim T (s (1 - I (s)) ds = 0.
K- 0 C

For y E G and any K < c define *e(.) by
y

OC~t y +ft ;(s)IK (s)dsy ~ 0 e

There is an M < - and > 0 such that for each y satisfying
2

Y-Xo[ <-2there is a *6y(-) satisfying 0:'(0) (ty = y, with
2y y y

J c(t)j < m and S(t C < e, where t - 0 as E2 + 0. Define
0y - yy y2

y by

-y(t¢y C(t), t< ty

y y y
= ¢(t-t y), t > ty.

By (4.8) and the continuity of L(',*), we can find a sequence { y,K

where Ka 0 0 as a - 0 and such that for large a, (N satisfies the

conditions required on oE(.) in the first paragraph of the proof (where

C now depends on the chosen y,,K ). Recall S = inf {S (M):0(0) = 7 } = S (i).3an n n n n

Now, to get the reverse inequality to (4.7b) for either the degenerate

or the non-degenerate case, let sup S < and let On(.) be the c-optimal
n n n

path for S (#). We can select en()
n nl
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such that T6 T( e) - T < . Let IK'n(.) denote the indicator of
n nC

the set where 1;'(t)l > K. By (A4.5), the convexity of L (x,.)
n n

and L(x,.) and the uniform convergence on bounded sets, for each large

N < - there is a KN < - such that

(4.9) Sn(¢ ) >N N (t)dt

for large n. Thus, the set {0(), n large,E > 01 is uniformly

absolutely continuous. Extract a convergent subsequence, indexed by n,

--C E
and with limit * ( ), where 1 (0) = x. By Theorem 4.3,

(4.10) C + Iirn S (X ) > lim SnRE:) > S " ) > So p
n n n - n n - - 0n n

lim S > S0nn

Thus, Sn - S Q.E.D.

A useful special case is given by Theorem 4.5. See also Theorem 4.6.

Theorem 4.5. Let the H-functionals satisfy Hn (x,a) + H(x,a), each x,*.

Then S<S0 and under the conditions of Theorems 4.2 or 4.3, S n- SO

as n - o.

The theorem is obvious, since Ln(XS) < L(x,8). A case of particular

interest is where b(x,& n) = b(x, n) + b n(x, n ), and { } and { } are
n n n

independent of one another and H n(x,a) 0 0, uniformly on bounded (x,a)

sets (where H and H are the H-functionals corresponding to b and b,
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respectively). Then if the system corresponding to b satisfies the conditions

of Theorems 4.2 or 4.3, S n  as n

The H-function for (1.2) or (1.4) takes the form (where H0 is the

H-functional for a = 0)

H (x,a) = H 0(x,c) + ct'a(x)a'(x)/ 2 .

0Theorem 4.6. Let H0 (x,a) = H (x,a)+wo(ga'(x)/2, where we assume the
n n

conditions of Theorem 4.4 with H and Ha replacing H and H resp.
Then Sa -). _a as n n

n S O a___as n w. Furthermore, if satisfies (A4.1 to 4), (Al.3) in

the bounded U(x) case or (Al.3), (A4.1), (A4.3) in the unbounded U(x) case,

then S Y 0.S as a -0.0 0

The theorem follows from Theorems 4.2 to 4.5. Thus, when the system

c-intains (independent) Gaussian noise, the exit times are robust with

respect to changes in the other system noises. Also, the addition of small

Gaussian noise changesthe exit times only slightly under broad conditions.

Theorem 4.7. (Bounded U(x)) Assume (Al.1,3,4) and (A4.l,2,3,4,6,7).

Suppose that for each £ < 0, there is a & > 0 such that there is an

E-optimal path c(.) (with 4C(0) = x0 ) for S(.), with

$ (t) E Ua ( t)). Then S S 0 as n .n 0

The proof uses arguments developed in the theorems of this section

and only a few comments will be made. To get (4.7b) we roughly follow

the proof of that result in Theorem 4.4. The controllability (A4.7),

the continuity of U(.), and a pieceing together argument (such as used

for the construction of *y(*) in Theorem 4.4) are used to get an
y

e-optimal path (starting from x0) which satisfies the requirements of
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the third sentence of the proof of Theorem 4.4, except that

m$(t)l i M is replaced by (degenerate case) ;i(t) c U 2 ¢(t0), 1(t)=bl((P (t)), or

(non-degenerate case) c(t) . U'(Oc(t)), for some 6 > 0. Then define

$(.}as in the second paragraph of the proof of Theorem 4.4, and in the

analogous way for the non-degenerate case. There is a
6' > 0 such that for large n, (degenerate case) 4(t) E (0 (t)

2n E 2 (nt)

(and 4 (t) E U6'(06(t)) for the non-degenerate case.

Then use (4.7a) (or the analogous formula for the non-degenerate case) and

the convergence Ln(') L(-,-) uniformly on {x, : x E compact K, BEU (x)}

tDget (4.7b). The proof of (4.10) is very similar to the proof used in

Theorem 4.4, whether or not the U (x) are bounded. The appropriate con-
n

vergent subsequence of {€ (.)} is extracted by using the nature of the

convergence of Ln(.,.) L(.,.) and the boundedness of the U(x).

In the next theorem we show that the U (x) - approximation required by the

last theorem exits under reasonable conditions. We actually show the existence

of a slightly modified sez, called U (x), which can be used in place of Ux).

For 0 < 6 - 1, define {x '6} by
k

'YR6 = , + 6 Y'6) - ' Y'6 =
xk+l = + yb(xk + (1-6 )b(x ,k) = x =X

where b = b -b Let L6 denote the L-functional for {Y,6} and let H denote the

H-functional for 
b. Then

L (x,a) = sup[a' (6-b(x)) - H(x,(l-6)t)J

L(x, v b W

where v = B - b(x). Define U (x) by: 6 ( 16(x) if V = b(x) * (1-6)v, where

b(x) + v U(x). Clearly, under (A4.4), 6 (x) can be used instead of 56(x) in

the previous theorems (analogously for 6 W(x) and V (x) in the degenerate case).
2 2
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Define L (.,.) by :L (x,B) L(x,o) for a EU (x), and equal to infinity

otherwise. Let 56(.) denote the action functional corresponding to L (.).

LetLet x '(-) denote the piecewise linear interpolation of {x't6}with

interpolation interval y.

Theorem 4.8. Under (A4.1 to 4) and (Al.1 to 5), SO  S s 6 - 0. If

(A4.6,7) also holds, then S S0

Remark. The first sentence of the theorem implies that U (x) satisfies

the requirements put on U (x) in Theorem 4.7.

Proof. For notational reasons only, we work with the non-degenerate case.

First we show that for each compact x-set K there is a c(6) which goes

to 0 as 6 - 0 and such that (if a jU6(x), then both sides are infinite)

-'5 6(4.11) L (x,8) < L (x,B) + c(6), x e K.

Suppose (4.11) is false. Then there are c > 0, 6 n- 0, x E K and n(x n + v n

-an 6
aEU (x ) and 6 - 0 such that (recall the form of L given above the theorem)

Vn -

(*) L(x nb(x ) + vn) - L(Xnl-_ + b(xn)) > c.

This relation is impossible unless d(b(x ) + v, aU()x n 0 as n + =. Using

this and (*) and the convexity of the L(x,.), we get that L(x ,b(x ))-as n + ,n n
a contradiction. Thus (4.11) holds. We can show that

(4.12) lir 6T So 0> So0
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by a proof similar to that in the last part of Theorem 4.4. (See also the

comment after Theorem 4.7).

We now adapt a device used in [S, Lemma 5.1]. Let Su < . For T <

and small p > 0, define the sets A '  = event that xy'6(.) leaves G

by time T, and AY : event that x(.) leaves N (G) by time T. For
0 o

small 6 > 0, PfAy,'6  > P{A Y} . For each small h > 0, there is a
P - o

p > 0, a Thp (which we can suppose is bounded uniformly in h,p ) and a

function c0h,t.) such that h,?o) = x0, ch,P (Th,P 9N P(G) and (recall

(AI.S)) SO <- S(Th 'P,Oh 'P) < S + h. Then, by (1.6),
0_ 0

P{A1 > exp - [S + 2h]/y for small y . Let A = set of continuous paths

*(.) which leave G by time T and have 0(0) = x0. Then, for each h

there is a y0 > 0 such that for y < yo,

P{A Y '6} < exp - [ inf S6(T,€) - h]/y
OEA

Combining (4.11) with the estimates in the last paragraph yields that

for some TO < 0

(4.13) S0  - c(6)T < SO < inf S6 (T,O) < SO + 3h,
*EA

where T can be taken to be an upper bound (over small 6 > 0) for
0

6 6 6 6
(T(f )), where * are such that S (06) < S + 6. Combining (4.12) and

(4.13) yields the first assertion of the theorem.

Using U 6(x) for the U-'(x) in Theorem 4.7 yields the last assertion

of the Theorem. Q.E.D.
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There are also approximation Theorems for the inequalities (1.7).

Let A be a set of continuous functions on [0,T]. Define S (T,A) =n

inf S (T,O).
0,EA n

Then

-Sn(TA < lim y log P{xE() Al < Mm y log Pfx (.) E A} < -Sn(T,A),
Y Y

where H is the H-functional arising from the processes {xn(.), y > 01,
n n

n = 1,2, ... , each of which is of the form (1.1), (1.2) or the interpolation

of forms (1.3), (1.4) for suitable bnOn, bnC k replacing b, , k and

S is the Cramer transformation of Hn. Let A, E0 > 0 and compact G0 be
nn0

such that for t(.) E NE0 (A), O(T) E GO, t < T.

0

Theorem 4.9. Let S(T,A 0) = S(T,A) if the U(x) are bounded. Assume (A1.2',3)

where G1  is replaced by G in (Al.21. Assume (A4.1,2) and also

(A4.3,4) for the bounded U(x) case, and (A4.5) for the unbounded U(x)

case. Then in the bounded U(x) case, S (T,A) - S(T,A ) and in the unbounded
n

U(x) case, lir S (T,K) 5 S(T,A), lim S (TA ) < S(TA 0

n n n

Proof. Only an outline will be given. The techniques are similar to those

used in the previous theorems of this section. Fix E > 0. Let (.) be
n

such that S (TO') < S (T,A) + c. We can always choose such a sequence
n n - n

for which there is a convergent subsequence. Let n index the subsequence
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and denote the limit by TE(o). Then (') E A and by Theorem 4.2

and the arbitrariness of C > 0. we have

(4.14) lirS (T,A) > S(T,A).
nn

To get the reverse inequality, first consider the 'unbounded U(x)'

case, and let *c(.) be an c-optimal path for S(T,A0) such that I (t)I

is bounded. Then use an argument similar to that used in connection with (4.7a)

to get

(4.1S) li--- Sn (T,A 0 ) < S(T,A 0)

n

and the Theorem is proved for the unbounded U(x) case. We need not concern

ourselves with 'exit times' in this Theorem.

Now, to complete the proof for the bounded U(x) case, we use the

technique and terminology of Theorem 4.8. Define xY s (*) as above Theorem 4.8.

Suppose that A0 is non empty and for small p > 0 define the open set

AP = {O: . A,d(*,DA) > pl. For small 6 > 0

(4.16) P {X E . A} > P{x Y() E A },

and for each h > 0 there is a y(h)> 0 such that for y<y(h), the right

side of (4.16) is >exp - JS(T,A P) + h]/y and the left side is <

exp - [S (T,A) - h]/y. Using the terminology and result of Theorem 4.8,

S T,A) - c(8)T < S6(T,A). Now, by the hypothesis S(T,A0) 0 S(T,A),

we have that S(T,A) 4 S(A) = S(A O) as P - 0.



-35-

Now

0
(4.17) h + S(T,A0)+- S(T,AO) + h > S (IA) - I > S(",-) - c(6)T, - h

p O

Also, as in Theorem 4.8,

(4.18) lir S6 (T,A) > S(T,A) = S(T,A 0).

0 0
Relations (4.17), (4.18) imply that lim S (T,A0) = S(T,A0). Thus, for

6-0

small 6 > 0, we can select an E-optimal path 0 E for S(T,A 0 ) with

S(t)E U - (0(t)) (or, equivalently, in 'U(OE(t)), t < T, if we wish).

The proof of (4.15) follows from this, the convergence of L (*,-) ton

L(o,o) uniformly on {x, : x E G0 , S E U (x)} (or the analogous result for the

degenerate case) and the boundedness of U(x). Q.E.D.

5. Examples of convergence of H to Gaussian H-functional.~n

5.1 Let bn () and b n(-,) be Lipschitz continuous, uniformly in C. Let

N - as n -, and let {&ki' i > 0, k > 0} be i.i.d. with

N
n-

E b (X, ) =0, and define bn(x,&) = b (x,& )/ iN--. Define { x 1
n ki n k n ki n k

by (suppress the n index on xk) by

(.)x' =Y +~ YI(xy) + -Yb(x , &).k+l k n nk n k'k

Let H denote the H-functional when b (x) = 0. For convergence to the

n =1

Gaussian H-functional It(X ,a) = a'b(x) 4 ci'X(x)ci /2 we need bn(x) -+ b(x) and
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H (x,a) N log E exp a'b (x aki)/1/7n a'2(x)a/ 2 ,
n n n 'ki n

uniformly in x c G1  for some smooth Z(x). If the Eki are bounded,

then clearly Z(x) = lir E bn(X, i )bn'(Xki). But in general, the con-
n-*

vergence or lack of it depends on the higher moments of bn (X, ki)

N
n

5.2. Now let b (x &n) b (x,4 n), where N is Poisson with
n=l ki n

parameter X, and for each n, Ebn(x, nx 0 and { ni k > 0, i 0

are i.i.d. for each n.

Then

H (x,a) ; 2 [E exp ct' b (x n  - 1]
n n n ki "

Let X.n -O and X. E b(x,&n) b'(xE) n (x) uniformly in X E G, as n on n ik

Then, for H to converge to the Gaussian H-functional, it is sufficientn

that b (x) - b(x) and that uinf or/mln 2 nn ki) -! 0 uniformly
n n I=

9.= 3

in bounded C-sets, as n . This depends on the higher moments of

n ki If l n(Xki )I < 0 as n and 1 X nn < , then
n

the sum converges to zero as desired.

5.3. Consider the continuous parameter case

(5.2) dxy = b(xy )dt + o(x)djn(t/y),

where Jn(.) is a centered Poisson jump process with rate Xn and jump
n!
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random variables {n}. Then
1

H (x,a) = a'b(x) + lir y log E exp r'I1 a(x)dJ (t)

n

(5.3) : a'b(x) + xn[E exp a'a(x)(i - 1],

and the comments made in the discrete parameter case also apply here.

5.4 Let J(.) be a jump process with jump intervals c > 0 and bounded i.i.d.

jump random variables {i4. } with E, = 0 and consider the system
1 1

(5.4) xy = (xy ) + v(xy

where &(-) is the filtered noise

(5.5) $(t) = ft h(t-s)dJ(s).
0

For computational simplicity, let h(s) = exp - as, a > 0 and set

K = I/cy. Theny

0 (t)dt = h(t-s)dJ(s)
0 0O 0
I116  I1/Y  iC

- [11 dJ(s) h(t-s)dt = . -- [1 - exp - ac( - i)]
JO s i<l/cY

Thus

1/Y

lim y log E exp cLv(x) f (s)ds

v )Ky= lim Y log (E exp Y~ !
(S.6) Y Og a

1log E exp cv(x)
c a
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Now, replace (c, a, ¢i) by(c ,a n ), let 6 , where 6 /a -* 0

S22

an n . Let lim E (,n) /ac = u > 0. Then as n - ",(5.6) converges
n n

to the Gaussian form a2 v 2(x)u 2/2. If the deterministic intervals c were

replaced by i.i.d. and exponentially distributed intervals, the (5.4), (5.5)

would be close to actual physical noise models. We expect that the same

conclusions would hold in this case, suggesting that the Gaussian approximation

is indeed useful for a large class of physical noise models.

6. A Phase Locked Loop (PLL) Example.

This example does not completely fit the previous theorems, but it represents

an important and interesting class of applications where further work is required,

but where approximation theorems such as those here are essential if the results

are to be physically meaningful. Let{zi(*), 1+' i = 1.2} be mutually independ-

dent with zi(6) scalar valued Gaussian with mean zero and integrable covariance

function p(.), and i uniformly distributed on [0,2n]. A standard method of

representing wide bandwidth but 'band pass' noise n (.) in communication

systems is by using the form

ny(t) = [zY(t)cos( t + *1)+ z2 (t) sin(w t + 2 ),

where wy = w0/y, zT(t) = z.(t/q ), y/q + 0 as y + 0. For notational
0 0 i Y 6

simplicity, we set = . The bandwidth of ny .) is O(1/qY) and the center
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frequency O(1/y). Let the input yY(.) to the system be the sum of a signal

plus noise

y (t) = A y(t) sin(wyt + 6) + nY(t),

where AY(t) = A0 (t/q ) is a deterministic signal. Suppose that there is a

constant A # 0 such that the convergence
T1/q

lim qj A 0 (t)dt = A(T1-T0 )
Y 

0 q y

is uniform in (T1-To). As noted in more detail at the end of this section, the

function of the PLL is to track changes in e(.), a job of fundamental importance

in many modern low error communications systems. [101, [11]. The scaling

used here for the input signal and noise allows us to exploit the asymptotic

method, but the general type of scaling used is consistent with that required

by many applications where the center frequencies and bandwidths are large but

the bandwidth is small relative to the center frequency. In fact to use asymptotic

methods on such problems (i.e., to be able to replace the actual system noises by

simple stochastic processes), such a relation between the bandwidth and center

frequency seems to be required.

The dynamical equations of the two forms of PLL of Fig. 1 are given by (6.1a)

and (6.1b), respectively.

y = Dvy + Hwy, ;y = cvT ,

(6.1a) wY(t) = yy(t) cos(wyt + Oy(t)).
0

(6.1b) 0~ Kwy.
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Here %.) is the systems estimate of e(.) and the cos(w0t + ey ) term is

generated bythesystems 'voltage controlled oscillator'. Also vy(.) is the state

of a stable filter which is used in the 'forward' path in Figure la. A

trigonometric expansion of wy(t) yields terms involving sin or cos of 2Lyt.
0*

If we retain these terms, then their effects would drop out below when tim is
Y-0. 0

taken. So, for convenience, we expand wy(t), drop these 'high frequency'

terms and replace wy(t) by

U (t) AY(t) sin~e-e 12 + 1z1(t) cos ;
Y -z 2 t) sin; 1/2.uYt 0  1z 2 t i

For (6.1a) define x = (v,;), a = (a1 ,a2 ) and set

(x) Dv + HA sin(e-e)/2 I

Cv b2 x)

Then the H-functional for (6.1a) is (note that the appropriate scaling is qy

not Y here) [1/qy~z

H(x,a) = a'b(x) + lim q log E exp a'H/2 (t cos z - t)sin 6 ]dt
y+O 1 JO 1 2

(6.) a(a,H ) 2 -2

+ 2 a

___2_ -2

(6.2) = a'b(x) + 2 o

a = p(s)ds.

This is also the H-functional for the system

dv = b(v)-dt + H aqVdw,

Y

6= Cv
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where w(.) is a standard Wiener process. Since w(t) =

f Zt(s) Cos - zY(s) sin ;YJdsI2/~7 converges weakly to a Wiener process

w(.) with variance a2t, the small 'white noise' approximation to (6.1) makes

sense here. But we are not aware of a proof that H(x,a) actually gives an action function-

al and the exit time formulas (1.6) to (1.8),for the systems of (6.laorb) where the

normalizing factor y is replaced by q." Possibly such a proof can be based on

Azencott [1] for this purely Gaussian process. In any case, it is not adequate

to simply proceed from there, without some sort of limit or approximation

argument.

Although wy(.) converges weakly to w(.), if the z.(.) are only (sufficiently)
1

strongly mixing but not Gaussian, the H-functionals are not usually of the

form (6.2). Suppose that nY(.) was obtained from

an impulsive or shot noise process which was suitably filtered in order to

guarantee that the actual noise entering the system have bandwidth O(1/q )

and center frequency O(1/y). Rough calculations similar to those in Section 5.4

suggest that the limit would take the form (6.2) under reasonable conditions.

Such a result would be quite useful in applications; in many cases, such

shot noise based processes are closer to the true physical noise than is the

Gaussian noise. It would also be interesting to work with ny(t)/q , for some
Y

6 < 1/2 and use Freidlin's idea of moderate deviations [5].

The PLL systems considered above are an important class of applications

to which large deviations or singular perturbation methods have been applied [12].[161,

although it is now common practice to ignore the limit and approximation questions,

and even the (usual) 'pass-band' nature of the PLL in order to write down a

'small' noise t6 equation model directly, and allow the analysis to start from there.
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Let 0(t) = eO . The mean equation is x b(x), and for the usual filters,

(0,e0  x is a locally asymptotically stable point of this equation. For the

simple 'first order' PLL of Fig. 1, there is no filter and the limit equation is

e = K sin(8-6)/2, where K>O is a scalar. An important communications theory

problem is to estimate the minimum time for (v(t), 0(t)) or 6(t) to leave the

stability set of the limit equation. Owing to the difficulty of the problem,

and to the fact that the noise is often 'rapidly fluctuating' and with 'small'

effects, 'small noise' methods are appealing. Above, we have given an outline

of the role of the theory of large deviations. But for the actual physical

non-white noise model, a number of questions concerning modelling and approxi-

mation of the noise, and proof of the escapetime formula (1.8) still remain

open.



yw

0

(a) Hirher order phase locked loop

Fig .1. Phase Locked Loops
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Appendix

The proof of (1.6) in [5] is not quite valid for (1.2),(1.4),

since {pnI is unbounded. The proofs in (3] do not account for the rn or;(')

terms. If a(x) = a, the proofs given or referenced in [5] remains valid,

with a few modifications. Here, we remark on the required changes, without

proofs. For concreteness, the discrete parameter case only will be dealt with.

The set {f: S [0,T]) <a, (0) = x} on top of p.136 [5] is still

compact in the unbounded U(x) case, by (A4.5). Lemma 3.1 of [5] requires a few

modifications, since{p n  is unbounded. The inequality below (3.2j,p. 138 [5] is

no longer true, but it does hold modulo the probability of a set A Awhere

P{ACA } < exp-N/c, where N can be made as large as we wish by choosing E,A

small enough. Similarly, the set inclusion below fS, p.1381 holds modulo

a set of probability < exp -N/c, where N as A -) 0, 6 -* 0. With these

changes Lemma 3.1 of (5] holds.

Proof of Theorem 2.1 [5]. If a(x) = constant, the last set inclusion on

[5, p. 141] holds by the uniform Lipschitz condition on b(-,t). Concerning

the argument on p. 142 fS], the trajectories x ,(.), xE(-),do not belong

to a compact set. But for any large N, there is a set of probability

l-exp-N/E such that on this set the trajectories do belong to a compact set of

continuous functions- they satisfy a common holder condition.

I-..
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